
Static Analysis for Detecting Vulnerabilities in COTS Final Report

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this cdledion o* information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty tor failing to comply with a collecllon of infomiation if it does not display a currently valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE
ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
07-01-2005

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
09-09-2003 - 08-09-2004

4. TITLE AND SUBTITLE

Static Analysis for Detecting Vulnerabilities in COTS
Sa. CONTRACT NUMBER
N00014-03-C-0502

Sb. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6.AUTH0R(S)

Radu Gruian and Tim Teitelbaiim

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GrammaTech, Inc.; 317 N. Aurora St.j Ithaca, NY 14850

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research 800 North Quincy Street

Arlington, VA 22217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Unrestricted

DISTRIBUTION STATEME
 Approved for Public Releai
13. SUPPLEMENTARY NOTES Dlstrlbutjon Unlimited 20050412 018
14. ABSTRACT
This is the final report of a project to study object code analysis, rewriting,
and regeneration; interacting with Univ. of Wisconsin on enhancements to and
applications of CodeSurfer/x86 and Weighted Moped; and supporting DOD clients in
their evaluation of assurance and understanding tools developed at GrammaTech.
This one-year project was a continuation of a two-year effort that involved two
CIP/SW MURIs at the University of Wisconsin and Carnegie-Mellon University (CMU)
managed by the Office of Naval Research (ONR), and four separately funded
GrammaTech projects with similar goals.

15. SUBJECT TERMS
Static analysis binary code-rewriting code-generation model-checking Moped effect-
analysis pointer analysis ^^
16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT

Same as
report

18.
NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Tim Teitelbaum
19b. TELEPHONE NUMBER
(include area code)
607-273-7340
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Static Analysis for Detecting Vulnerabilities in COTS Final Report

A Introduction

Using advanced static analysis offers the potential to find both bugs and security vulnerabilities in
code. Our system, named CodeSurfer, is being applied to solving these problems. In particular,
CodeSurfer is a key component of two ONR CIP/SW research projects. Researchers at the
University of Wisconsin are using CodeSurfer in their project "Vulnerability and Information Flow
Analysis for COTS." In addition, Carnegie Mellon University and the University of Wisconsin are
using CodeSurfer's pointer analysis in their joint ONR CIP/SW project, "Static Analysis to Enhance
the Power of Model Checking for Concurrent Software".

This one-year project was a continuation of a previous one-year effort (contract N00014-02-C-
0188) that involved the aforementioned CIP/SW MURIs at Wisconsin and CMU, and four
separately fiinded GrammaTech projects with similar goals. The focus of this project has been to
continue to participate in the efforts of these research projects, specifically by modifying
CodeSurfer to meet their infrastructure requirements for code analysis, code-rewriting, and code-
regeneration; to participate in the CIP/SW project reviews; to participate with Wisconsin and CMU
in their efforts to publish the resuhs of their CIP/SW research; and to support DOD clients in their
testing and evaluation of transitioned technology.

This is the final report of the project. The report summarizes work done in both years; a single
dagger (f) indicates work performed solely under contract N00014-02-C-0188; a double dagger (J)
indicates work performed solely under contract N00014-03-C-0502; the absence of either dagger
indicates work performed during both contracts.

B Approach

Our approach to creating an effective common infrastructure for these research projects was to start
with CodeSurfer [2, 3], a tool that was originally narrowly conceived as just a program
understanding system for ANSI C, and then adapt it to meet the needs of a collection of
representative researchers wanting to use it for other applications. Specifically, we worked with six
different efforts within two CIP/SW MURIs at the University of Wisconsin and Carnegie-Mellon
University (CMU) managed by the Office of Naval Research (ONR), and four separately funded
GrammaTech projects with quite similar goals:

Application A. Wisconsin / CMU Projects B. GrammaTech Projects
1 Object Code

Analysis
Analysis of COTS executables for the
Intel x86 family of processors (Reps,
Balakrishnan)

Analysis of firmware for the Intel x86
family of processors (AFRL/Rome SBIR
Phase-I and Phase-II projects "Detecting
Malicious Code in Firmware")

2 Buffer-
Overrun
Analysis

Detection of buffer-overrun
vulnerabilities in C source code (Jha,
Ganapathy)

Detection of buffer-overrun vulnerabilities
in C source code (AFRL/Rome SBIR Phase-
I and Phase-II projects "Source Code
Vulnerability Analysis")

3 Object Code
Rewriting

Binary code (x86) rewriting technology
for secvirity (Jha, Miller, Giffin, and
Christodorescu)

Java byte code (Jimple) rewriting
technology for security (NIST SBIR Phase-I
and Phase-II projects "Inline Reference
Monitors for Object Code")

Static Analysis for Detecting Vulnerabilities in COTS Final Report

4 Model
Checking

(a) Weighted pushdown systems (Reps,
Jha)
(b) Verification of properties of
concurrent C programs (Clarke, Sagar)

Verification of path properties in C and C++
programs (DARPA SBIR Phase-I and
Phase-II projects "Verification of
Hierarchical Graph Stractures")

5 Viras
Detection

Detection of viruses in binary (x86)
code. (Jha, Christodorescu)

(none)

C Technical Objectives

One of the goals was to create a powerful, flexible, and open toolkit for static program analysis that
would support multiple programming languages, multiple computer platforms, multiple analysis
algorithms, and multiple client applications. A successful design would maximize code reuse, i.e.,
minimize the amount of code duplication that would be required of any given user of the toolkit.

Armed with a powerful general purpose analysis infrastructure, our primary goals were (a)
transferring GrammaTech technology to Wisconsin and CMU in support of their MURI projects,
(b) transitioning research results from those projects back into GrammaTech, and (c) supporting
early adopters of the transitioned research resuhs in the Government.

The project was designed to be a win for each of the three parties involved:

• Universities would get access to high-quality, supported technology, thereby fi-eeing them
to focus on basic research. This would minimize their humdrum engineering activities, and
minimize disruptions involved in day-to-day support of early adopters.

• GrammaTech would get access to world-class researchers and their prototypes for new
cutting-edge products, as well as feedback from early adopters to guide the development of
those products.

• The Government would avoid funding wasteful duplicate work, and accelerate transitions
of basic research.

D Wlork Items Planned

The work items for the project were as follows:

• To design and implement a new architecture for CodeSurfer and new APIs with which users
could program their static analyses; and to create two reference implementations of static
analysis algorithms using the new architecture and APIs.

• To support Wisconsin's efforts to use CodeSurfer for x86 for code-rewriting and code-
regeneration applications.

• To support Wisconsin's efforts to use CodeSurfer for x86 to implement effect analysis and
pointer analysis for x86.

• To continue to interact with Wisconsin and Stefan Schwoon on enhancements to, and
applications of Weighted Moped.

• To continue to support CMU's use of GrammaTech's Pointer Analysis Module (PAM),
including making improvements to PAM, as part of our two-year effort of collaborating with
CMU.

Static Analysis for Detecting Vulnerabilities in COTS Final Report

• To participate in the CIP-SW project reviews for Wisconsin and CMU, including
preparation and presentation of relevant material at the reviews.

• To participate with Wisconsin and CMU in their efforts to publish the results of their CIP-
SW research.

• To support DoD clients in their experimental evaluation of assurance and understanding
tools developed at GrammaTech.

More specifically, we anticipated doing the following work to meet our initial technical objectives:

1. Multi-lingual capabilities. This work would involve

a. Abstracting language-specific functionality out of CodeSurfer per se.

b. Reinstantiating pre-existing versions of CodeSurfer using the factored language-
independent services we had introduced.

c. Implementing new fi-ont-ends for one or more other programming languages to
demonstrate the generality of the new architecture.

2. Builder modularization. This work would involve

a. Decomposing CodeSurfer's monolithic builder into its constituent analysis
components, and creating an open API for each such component. This would allow
clients of the system to program their own analyses by writing their own code using
the API in whatever phase ordering or iteration schemes were most suitable for their
own applications.

b. Implementing new analyses making use of the newly exposed components to
demonstrate the generality of the new architecture.

3. Back-end extensions. This work would involve

a. Creating additional open APIs in the back-end to support plug-in applications.

b. Demonstrating the use of those APIs by various plug-in applications.

We also anticipated the following work to meet the remaining objectives:

• Support to MURIs. Discussions with the MURI researchers to elicit their requirements,
interactions during an iterative design cycle, delivery of new versions of software, and bug
fixing in a timely manner.

• Transition from MURIs. Adaptation and adoption of MURI research results within
GrammaTech.

• Outreach. Discussions with prospective early adopters, packaging and documenting results
in a distributable form, delivery to early adopters, and support to them. Writing of co-
authored papers.

• Reporting. Participation in bi-annual MURI reviews.

E Results

Our initial technical results were as follows:

1. Multi-lingual capabilities.

Static Analysis for Detecting Vulnerabilities in COTS Final Report

a. We developed a front-end System Development Kit (SDK) for CodeSurfer that
facilitates creation of alternative front-ends for different programming languages.
The SDK contains

i. Abstract datatypes that can be used by a front-end to build and output the
intermediate representations needed by the CodeSurfer builder.

ii. The notion of a Language Module that contains all language-specific code
and data needed by CodeSurfer.

iii. Complete documentation.

The SDK supports:

i. A language-independent abstract-syntax-tree (AST) framework. The AST
representation can be made available for use in front ends, in the dependence-
graph builder, and in the back-end scripting language.

ii. A language-independent control-flow graph (CFG) definition facility.

iii. An absfract datatype for source-position information.

iv. Absfract datatypes in support of pointer analysis (see PAM, below).

b. We reinstantiated our pre-existing ad hoc versions of CodeSurfer for C/C++ and
Intel x86 using the SDK.

c. We used the SDK to implement a new version of CodeSurfer for Jimple [1], a three-
address version of Java byte codes. (This work was funded by our NIST SBIR
confract.)

2. Builder modularization.

a. We factored CodeSurfer's pre-existing pointer analysis code into a separate Pointer
Analysis Module (PAM) that can be used independentiy of CodeSurfer. PAM
consists of

An SDK for creating the intermediate representations needed by the pointer
analysis engine.

ii. The pointer analysis engine itself

iii. An API, termed the Pointer Analysis Data Base (PADB), for accessing the
points-to results that have been computed by the pointer analysis engine.

b. We had originally anticipated modularizing and exposing the individual analysis
components of the CodeSurfer builder, thereby allowing users to instantiate different
"builders" of their own choosing. However, two concerns on the part of the Pis at
Wisconsin, performance and intellectual property rights, led us to implement a quite
different architecture. In short, Wisconsin wanted a light-weight analysis platform
for x86 binaries that could be severed from CodeSurfer altogether. Accordingly,
rather than modularizing the CodeSurfer builder, we were asked to provide an
effective analysis infrastructure wholly within the x86 front end. In effect, the front-
end SDK, which was intended just to facilitate a client's access to the analysis
capabilities of CodeSurfer's builder, became the analysis platform itself Some
features of the CodeSurfer builder, e.g., basic block analysis, were lifted from the

1.

Static Analysis for Detecting Vulnerabilities in COTS Final Report

builder and replicated in the front end. Unfortunately, this was at odds with our goal
of minimizing code duplication.

3. Back-end extensions. Joint work by GrammaTech and Wisconsin on buffer-overrun
detection led to several back-end extensions:

a. The creation of a general-purpose browser for viewing the results of code scans.

b. The creation of an open API for serializing CodeSurfer objects. This extension was
needed to provide a persistent representation of the buffer-overrun results.

Our activities aimed at the remaining objectives were as follows:

• Collaboration with the Wisconsin MURI. In two of the application areas, Object Code
Analysis and Buffer Overrun Analysis, the efforts at GrammaTech and Wisconsin became
so tightly intertwined that it is not appropriate to describe those activities in simple
unidirectional terms as "support to" or "transition from" the MURI. The efforts became true
collaborations.

o Object Code Analysis. Wisconsin and GrammaTech collaborated on the
development of x86fe (a.k.a. "the cormector"), which can be used as a standalone
x86 analysis module, or as a CodeSurfer front-end. Roughly speaking, the division
of labor is that Reps and Balakrishnan work on Value Set Analysis (VSA), Affine
Relation Analysis (ARA), and Aggregate Structure Identification (ASI) [4, 5], and
GrammaTech does the rest including

i. Abstract Syntax Tree (AST). An absfract syntax free is provided for the
analyzed program.

ii. Control-Flow Graphs (CFG). A confrol-flow graph is computed for every
fiinction.

iii. Use/Def Information. Detailed use/kill/conditional-kill information is
provided for every instruction.

iv. Register Live-Range Analysis (RLRA). The live-ranges of registers are
computed.

V. Basic Blocks. Basic blocks for the entire application (including libraries) are
computed.

vi. Call Graph. The call graph for the entire program (including libraries) is
computed.

vii. Support for Libraries. A repository of pre-processed libraries is computed,
from which individual procedures are demand loaded.

viii. Spill Regions. Regions of code are computed in which registers are "spilled"
into memory locations (e.g., "mem = eax;...; eax - mem;").

ix. Register Save/Restore Instruction Pairs. Pairs of instructions that are used to
save/restore registers at a call (caller), or on entry to/exit from a procedure
(callee), are computed.

Static Analysis for Detecting Vulnerabilities in COTS Final Report

X. Port Analysis. Pseudo-variables are created for all ports accessed by the
program. Port references are determined using constant propagation.

xi. Graph Algorithms. Various graph algorithms and data structures are
provided, such as strongly connected components (SCCs).

xii. Support for Multiple-Entry-Point Functions. Multiple-entry-point functions
are detected and represented.

xiii. Support for Clones. Multiple-entry-point functions are optionally cloned and
converted to single-entry-point functions.

xiv. Support for Non-linear Functions. Instructions that are not included in any
function(s) by IDAPro are added to the function(s) that end up executing
them.

XV. Support for Import Tables. Functions and DLLs that are imported by the
program are detected.

xvi. Register Aliases. A map of register aliases is maintained (e.g., al -> ax ->
eax).

xvii. End-to-end Connectivity with CodeSurfer. x86fe and CodeSurfer are kept in
synch.

o Buffer Overrun Analysis^. During the first year of our two-year effort, Wisconsin
and GrammaTech collaborated on the development of a tool for the detection of
buffer-overrun vulnerabilities in ANSI C programs. During that year, we co-
authored a paper describing our joint work [6]. We tested the tool on the current
version of the Washington University FTP daemon, a popular file transfer server,
found 14 previously unreported overruns, and reported them to the developers.

• Support to the MURIs.

o PAM^. On 9/26/02, Prof Jha requested that GrammaTech repackage CodeSurfer's
pointer analysis module as a stand alone component (PAM) for use in a joint
CMU/Wisconsin project involving Prof Clarke and his student Sagar Chaki. The
user manual was delivered to CMU and Wisconsin on 12/20/02. Creating PAM
involved interacting closely with Mr. Chaki during the requirements, design,
implementation, and deployment phases of the effort.

• Transitions from MURIs.

o CodeSurfer/x86. Prototype versions of CodeSurfer/x86 have been presented and
delivered to numerous government and FFRDC sites. These are detailed below. The
current version of CodeSurfer/x86 is described in the CodeSurfer/x86 User Guide
and Technical Reference, which is attached as a separate volume of this final report.

o Model Checking. We transitioned the work of Reps, Schwoon, and Jha on weighted
pushdown systems [8], and their prototype implementation (Weighted Moped) to
GrammaTech, where we are using it as a model checking engine for the Path
Inspector [7], a tool that checks sequencing properties in programs. The Path
Inspector has been released as a commercial product.

Static Analysis for Detecting Vulnerabilities in COTS Final Report

• Outreach

o SPAWAR . In a separately funded effort, we worked to transition Wisconsin's
research to SSC-SD (SPAWAR). We trained a SPAWAR employee to use
CodeSurfer and the prototype Wisconsin/GrammaTech buffer-overrun vulnerability
detector. We then used the buffer-overrun tool to analyze the GCCS-M Tactical
Management Service (TMS), and found one possible overrun in this fielded program,
albeit not an overrun that can be exploited to seize control of the program.

o Lincoln Labs*. A classified research project at MIT Lincoln Labs adopted
CodeSurfer/x86 as a platform for their work on March 3,2004. The project is
directed by Dr. Robert Cunningham, and is sponsored by DARPA/ATO under their
"Dynamic Quarantining of Worms" effort, Anup Ghosh, Program Manager. We
provide this group with each new development version of CodeSurfer/x86 as it
becomes available, and provide telephone and email support for them on an
unclassified basis.

o IDA/CCS*. On April 21,2004, Tim Teitelbaum and David Melski visited IDA/CCS
(Bowie) and informally briefed David Cohen, David Smitley, and Jesse Draper about
CodeSurfer/x86. This meeting led to a half-day visit to IDA by Tom Reps on May
19,2004, during which he gave a formal presentation to an audience that included
IDA, NSA, and ARDA representatives. This led, in turn, to an ongoing evaluation of
CodeSurfer/x86 by IDA/CCS that began on June 6, 2004.

o Sandia . On May 27, 2004, we hosted a visit from three researchers of Sandia
National Laboratory (Steve Williams, Doug Ghormley, and Todd Jones) during
which we presented the results of the Wisconsin/GrammaTech collaboration.
Subsequently, we established a support arrangement with Sandia. We have delivered
multiple copies of CodeSurfer/C and C++ to Sandia, and will deliver a prototype
version of CodeSurfer/x86 early in 2005.

o NSA*. Tom Reps and Tim Teitelbaum gave several presentations to NSA, one on
September 23,2004 over the web, and a second at Ft. Meade on December 6,2004.
Discussions with NSA are ongoing.

o AFRL*. On April 9, 2004, Tim Teitelbaum made a two-hour presentation on
CodeSurfer/x86 to Bill Wolf and John Feldman in Rome, NY.

o DARPA/ATO*. On May 11,2004, Tom Reps briefed Anup Ghosh at DARPA
headquarters.

o IRC*. Li July 2004, Tom Reps briefed the Infosec Research Council in Washington.
The talk was structured as a combined PowerPoint and live CodeSurfer/x86 demo. A
joint Wisconsin/GrammaTech whitepaper was distributed to the attendees.

o Mitre*. On May 11,2004, Tom Reps made a presentation on CodeSurfer/x86 to
Mitre in Washington. This was followed by several phone conferences with Joshua
D. Guttman, who heads security research at Mitre. Although he was keen to have
one or more of his malicious-code researchers at Mitre begin working with
CodeSurfer/x86, this transition is currently dormant.

Static Analysis for Detecting Vulnerabilities in COTS Final Report

o CERTI We were contacted by John McHugh of CERT about the possibility of
using CodeSurfer/x86 in a proposed project to derive functional characterizations of
x86 programs. On June 17,2004, Tom Reps gave a web demonstration to John
McHugh and David Mundie. This was followed by an extended phone conference
and subsequent delivery of CodeSurfer/x86 on July 2, 2004. This transition is
currently dormant to a redirection of CERT activities.

• Reporting

o MURI Reviews. GrammaTech staff (David Melski and/or Tim Teitelbaum)
participated in, and made presentations at, the Wisconsin and CMU MURI reviews
in Harpers Ferry''^, Pittsburgh^ Williamsburg''^, and Baltimore^.

o OSD. Tim Teitelbaum and David Melski briefed^ Andre van Tilborg at his office on
July 24,2003. Tom Reps and Tim Teitelbaum briefed^ Andre van Tilborg and Steve
King over the web on June 7,2004.

o ONR*. Tim Teitelbaum (and Tom Reps by phone) briefed Gary Toth at ONR on
April 29, 2004.

F Conclusions

Most research projects must spend a great deal of time developing infi-astructure before they can
begin addressing interesting research questions. Projects at both Wisconsin and CMU were able to
reach their goals more efficiently by building on top of infrastructure provided by GrammaTech,
and by being involved in a feedback loop that ultimately tailored that infrastructure to better suit
their research needs. At the same time, GrammaTech was able to fransition research results from
Wisconsin into usable technology that helps solve real world problems.

References

1. Soot: a Java Optimization Framework. McGill University.
2. CodeSurfer User Guide and Reference Manual. 2004, Ithaca, NY: GrammaTech, Inc.
3. Anderson, P. and T. Teitelbaum, Software Inspection using CodeSurfer. In WISE 01, Workshop on

Inspection in Software Engineering. 2001. Paris.
4. Balakrishnan, G. and T. Reps, Analyzing memory accesses in x86 binary executables. 2003,

Computer Sciences Department, University of Wisconsin, Madison, WITR-1486.
5. Balakrishnan, G. and T. Reps, Analyzing Memory Accesses in x86 Executables. In International

Conference on Compiler Construction. 2004.
6. Ganapathy, V., et al., Buffer Overrun Detection using Linear Programming and Static Analysis. In

10th ACM Conference on Computer and Communications Security. 2003. Washington, DC.
7. GrammaTech, The Path Inspector. 2004,

http://www.grammatech.com/products/codesurfer/overview pi.html.
8. Reps, T., S. Schwoon, and S. Jha, Weighted pushdown systems and their application to

interprocedural dataflow analysis. In 10th Int. Static Analysis Symp. 2003. San Diego, CA.

